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Abstract

In this thesis we investigate a novel binary formation channel with a semi-

degenerate donor and examine the stability criteria in binary systems with a

massive donor. First we will review the current basics in the understanding

of binary systems along with where recent research has been moving in this

area. Following this we will review the implementation of these theories in

the binary evolution code used throughout the rest of the thesis. We then

apply this code to a novel binary formation scenario involving a black hole

and a semi-degenerate donor. The key difference in this formation channel and

previous work is the amount lost during dynamical encounter. Following this

we investigate the stability of mass transfer in massive donors. We find that

should the onset of mass transfer occur between two key points of instability

in a massive star’s evolution, the mass transfer in the system is stable. This

has dramatic effects on the formation rate of possible black hole-black hole

mergers and may instead be a possible formation channel for ultra luminous

X-ray sources. Finally we go over the assumptions made in this work and how

these affect the reliability of the results presented.
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“It is not necessary to have a physically correct expression in order to obtain

sensible answers”

Peter P. Eggleton
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Chapter 1

Introduction

From the initial suggestion by Michell (1767) that stars may interact with one

another to the recent advancements in observatories and modelling techniques,

our understanding of stellar and binary evolution has drastically changed. De-

spite the improvements mentioned, many outstanding issues still exist within

our understanding of these systems. Ranging from uncertainties with the for-

mation rate of the systems themselves to the properties of the system during

evolution, many of these issues remain topics of research in the field. In this

work, we will go over some underlying theory for binary systems and how they

interact. We will then explain how these theories are applied in the stellar

code MESA in Chapter 2. In Chapters 3 and 4, applications of the theories and

MESA code will be discussed. Chapter 5 will reiterate uncertainties with how

the theories were applied in this work and how these uncertainties may affect

the results.

1.1 Importance of Binary Systems

Initially introduced by Herschel (1802) in his catalogue, a binary system is a

system where two stars are gravitationally bound to one another and thus,

orbit about a center of mass. While over 200 years have passed since the first
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discovery of these systems, we still do not have a comprehensive understanding

of how stars evolve in binary systems. The impact of a companion star on stellar

evolution is not minor; many stars exist in systems with a companion (Abt and

Levy, 1976; Duchêne and Kraus, 2013; Mason et al., 1998). A large fraction of

these systems in binaries are expected to interact at some point during their

lifetime (Kobulnicky et al., 2012, 2014; Sana et al., 2012). With such a large

fraction of stars predicted to interact, it is suggestive the phenomena observed

in stars is heavily influenced by binarity. These phenomena range from blue

stragglers (Bailyn, 1995), where mass transfer causes the accretor to appear

bluer and younger, to the recent detection of gravitational wave emissions from

binary black hole systems (Abbott et al., 2016a,b, 2017).

1.2 Importance of Mass Transfer

The evolution of a binary system is greatly influenced by interactions between

the two stars. While it is possible a binary may be formed with a large enough

binary separation where the two stars only interact gravitationally, if the two

stars are close enough together, the stars will undergo mass transfer at some

point in their evolution. This transfer of mass from one star to the other

results in X-ray radiation being emitted as mass is accreted if the accretor is

compact. These systems are known as X-ray binaries. Depending on binary

properties such as the distance between the two stars, the donor’s mass and

it’s evolutionary state, the accretion process may be wind fed or through what

we will call L1 mass transfer. The onset of L1 mass transfer occurs when a star

overfills its Roche lobe.

The Roche lobe of a star is the region where the material is still gravita-

tionally bound to it. If the radius of the star exceeds the Roche lobe of the

given star, the material may then be transferred to the companion or simply

lost from the system. The Roche potential, assuming a circular orbit, constant
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angular velocity and a corotating frame with the binary is given by:

ΦRL(x, y, z) = − GMd√
[x+(Ma/M)a]2+y2+z2

− GMa√
[x−(Md/M)a]2+y2+z2

− GM
2a3 (x2 + y2) (1.1)

Equation 1.1 is adapted from Eggleton (2006) where G is the gravitational

constant. Md and Ma are the masses of the donor and accretor respectively.

From this point onwards, the subscripts d and a denote the donor and accretor

respectively. M is the combined mass of the two stars and a is the separa-

tion between the two stars. The above equation is represented in Cartesian

coordinates (x, y, z) where the origin is located at the center of mass of the

binary. A graphical representation of Equation 1.1 is shown in Figure 1.1. The

various coloured lines show surfaces of gravitational equipotential. A neutral

point exists where the equipotential surface crosses over itself, this is known as

the inner Lagrange or L1 Lagrange point. This is the point of first intersection

between the accretor and donor Roche lobes and where material will begin to

flow through during mass transfer. This process where the donor radius ex-

ceeds the Roche lobe and results in matter flowing across L1 is known as Roche

lobe overflow (RLOF) and is the primary method of mass transfer.

The radius of the Roche lobe crossing through the L1 point can be approx-

imated by (Eggleton, 1983)

RRL

a
≈ 0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (1.2)

where RRL represents the radius of the Roche lobe and q is the mass ratio

Md/Ma. From this approximation there are three classes of close binaries as

described by Kopal (1955):

1. Detached Systems: Neither star fills their respective Roche lobe and the

stars interact gravitationally. The stars may still transfer mass through
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Figure 1.1: Roche lobe schematic in the x-y plane with a 1.4M� accretor and a
1.0M� donor, initial separation of 26R�. The two curves represent two different
surfaces of gravitational equipotential. If the donor star radius exceeds the
smaller grey lobe, then mass will be lost through the L1 point. If the donor
overfills beyond the dashed curve then it will lose mass through the L2 point.

winds but no mass is transferred through the L1 point.

2. Semi-detached Systems: One of the stars fills its Roche lobe allowing

for mass transfer to occur through the L1 point from the donor to the

accretor.

3. Contact Systems: Both stars fill their respective Roche lobes and the

stars are in physical contact with one another.

A fourth possibility exists where the donor star overfills the L2 point. The

matter flowing through the L2 will either leave the system entirely or remain

bound to the system resulting in what is known as common envelope evolution

(Paczynski, 1976). In this scenario, the two stars are so close together they

orbit within a shared common envelope. The details of this scenario are a

topic of ongoing research and are outside the scope of this work (see Ivanova
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et al., 2013, for a review on common envelope events). In this work, we will

focus on semi-detached systems where RLOF occurs.

1.2.1 Mass Transfer Stability

Once mass transfer begins, the timescale at which the process occurs is directly

linked to its stability and lifetime. Stability depends on how the donor and

accretor respond to mass transfer and how the Roche lobe changes over the

course of evolution (Hjellming and Webbink, 1987; Soberman et al., 1997).

The stability of mass transfer in binary systems is generally defined by three

mass-radius exponents

ξeq =

(
d ln R

d ln M

)
eq

, ξRL =

(
d ln R

d ln M

)
RL

, ξad =

(
d ln R

d ln M

)
ad

, (1.3)

which define the mass-radius exponents for stars in thermal equilibrium, the

Roche lobe of the star, and for the star losing mass adiabatically. Based on

these three mass-radius exponents, there are three different mass transfer cases

corresponding to three different timescales.

1. Stable mass transfer occurs when ξRL ≤ ξeq. This corresponds to the case

where the donor star remains in thermal equilibrium and thus does not

expand quickly. The mass transfer is driven by nuclear evolution of the

donor and occurs on the nuclear timescale. For example, in the case of a

main sequence star it is

τnuc ≈ 1010 M

M�

L�

L
yr (1.4)

2. The mass transfer in the next step up is thermal timescale mass transfer.

In this regime ξad ≥ ξRL > ξeq and mass transfer is driven by thermal

readjustment of the donor star. The thermal mass transfer rate can start
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as low as ≈ 10−8 M�yr−1 for a Sun-like 1M� star transferring to a 1.4M�

Neutron star. This mass transfer is still dynamically stable and self-

regulating. If mass transfer is too low, then the donor star will expand to

force the mass transfer rate to the appropriate value. If the mass transfer

is too large, then the donor star will shrink within its Roche lobe reducing

the mass transfer rate.

3. The case where mass transfer is dynamically unstable is when ξRL >

ξad. This mass transfer occurs on a short timescale and the star cannot

readjust quickly enough to shrink the radius to keep it within the Roche

lobe. The response of the donor star in these cases is tied to the entropy

profile of the star. If the entropy profile of the star is constant with respect

to the mass coordinate of the star, the star will experience expansion

as it loses mass. This results in the radius of the donor continuously

expanding causing the mass transfer rate to also continuously grow. It

has been shown however in the work of Woods and Ivanova (2011) and

Pavlovskii and Ivanova (2015) the response of the donor star differs from

the simplified approach in Hjellming and Webbink (1987). The donor

may not be continuously expanding as the surface of the star may be

able to readjust. Systems with high mass transfers which overfill the

L2 point are expected to undergo a common envelope event and spiral

in phase (see Ivanova et al., 2013; Ivanova and Nandez, 2016, for more

details on common envelope events and the spiral in phase). Recent

work by Pavlovskii et al. (2017) has shown if mass transfer occurs within

a stability range, even if the system overfills the L2 point it will not

experience unstable mass transfer. See Chapter 4 for more information

on this stability range.

These three types of mass transfer can generally describe the stability of the

system. Beyond this simple classification of stability, it is also possible for mass
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transfer to be initially stable, increase over the course of the system’s evolution,

and lead to a delayed dynamical instability (see Webbink, 1985; Hjellming and

Webbink, 1987, for more details on this instability). This delayed instability

occurs in stars that initially have a deep radiative envelope and are stable to

short timescale mass transfer. As the mass of the envelope is stripped away

however, the entropy gradient of the star may flatten. Should the star be

stripped to a point where the entropy profile is flat with increasing mass, the

star will experience expansion as described in the dynamically unstable case.

Dynamically unstable mass transfer is commonly calculated using an adi-

abatic approximation. Adiabatic mass loss does not exist in nature and is a

result of assumptions made in modelling mass transfer (Hjellming and Web-

bink, 1987). If the mass transfer rate occurs on timescales where thermal

readjustment cannot occur the entropy of the star does not have sufficient time

to readjust and react to the mass loss. Due to the entropy of the star being

unable to readjust, the stability of mass transfer will be overestimated in stars

with a radiative envelope and underestimated in stars with a convective enve-

lope (Ge et al., 2015). The details of adiabatic mass transfer are still a topic of

ongoing research and as such we will be using the simplified three classifications

of mass transfer (see Ge et al., 2010, 2015; Woods and Ivanova, 2011, and the

references therein for more details on the stability of adiabatic mass transfer).

1.3 Importance of Angular Momentum Loss

Mass transfer is the most visible method of binary interaction but the donor

star must fill its Roche lobe for this to occur. This normally occurs in one of two

ways, the donor star expands over the course of its evolution or the Roche lobe

of the star shrinks. Stellar expansion occurs naturally and the radius of the star

can increase by orders of magnitude once it leaves the main sequence. Binary

separation decreasing prior to this point in stellar evolution is also expected as
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there is evidence of stellar interaction during the main sequence (Sana et al.,

2012). From Equation 1.2, we see the radius of the Roche lobe depends on

two factors: the mass ratio of the system and the binary separation. Before

mass transfer can occur, the changes in the mass ratio should not appreciably

change the size of the Roche lobes. Instead, what normally drives the Roche

lobes to shrink is a decrease in the binary separation of the stars. Equation 1.5

describes the relationship between angular momentum J, binary separation,

the masses of the system and the eccentricity e of the orbit.

J2 = G
M2

dM2
a

Md + Ma

a(1− e2), (1.5)

2
J̇

J
=

ȧ

a
+ 2

Ṁd

Md

+ 2
Ṁa

Ma

− Ṁd + Ṁa

Md + Ma

− 2
ėe

1− e2
. (1.6)

From Equation 1.6, we see the primary method of bringing the two stars

in a circular orbit closer together without losing mass is through the loss of

angular momentum.

1.3.1 Gravitational Radiation

Perhaps the most well understood mechanism of angular momentum loss is

gravitational radiation, the process where angular momentum of the system

is lost through the emission of gravitational waves. With the canonical ex-

ample of how accurate the predictions of gravitational radiation are being the

Hulse-Taylor Binary (Weisberg and Taylor, 2005). The loss of angular momen-

tum, assuming a circular orbit is described by (Kraft et al., 1962; Landau and

Lifshitz, 1975)

J̇GR

J
= −32G3

5c5

MdMa(Md + Ma)

a4
, (1.7)
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τGR =
−J

J̇GR

=
5c5

32G3

a4

MdMa(Md + Ma)
, (1.8)

τGR describes the timescale for angular momentum loss through gravitational

radiation. Gravitational radiation only comes into play when the binaries are

already very close together as it scales with a4. As an example, for a system

similar to the one shown in Figure 1.1 with a 1.0M� donor and a 1.4M� accretor

requires a separation a . 2.5R� for τGR to be comparable to Hubble time.

1.3.2 Magnetic Braking

While gravitational radiation dominates in very close binaries, magnetic brak-

ing is important even in systems where the separation is large. Magnetic brak-

ing is the process where mass being lost from the star via stellar winds is

still bound to the star due to magnetic field of the star. Despite the amount

of mass being relatively small, the radius where the material is locked to the

star’s surface rotation is large. This results in an appreciable amount of angular

momentum being lost when this mass leaves the system.

Unlike gravitational radiation which was derived from field equations (Kraft

et al., 1962; Landau and Lifshitz, 1975), the current default equation for mag-

netic braking was derived from observations (Skumanich, 1972). As such, the

default prescription for magnetic braking which is commonly referred to as the

Skumanich magnetic braking law, is calibrated to work with a specific subset of

stellar systems. Skumanich initially calibrated the rate of angular momentum

loss to single G type main sequence stars. The equation can be written more

generally from Rappaport et al. (1983):

J̇MB,Sk = −3.8× 10−30MdR4
d

(
Rd

R�

)γmb

Ω3 dyne cm (1.9)

Here, Md and Rd are the mass and radius of the donor, while γmb is a

dimensionless parameter normally ranging from 0 to 4, although there has

9



been work where γmb has been as large as 5 (Istrate et al., 2014; Sengar et al.,

2017). γmb = 4 corresponds to the Skumanich scaling for magnetic braking. Ω

is the angular velocity of the donor in units of s−1.

1.3.3 Angular Momentum Loss Through Mass Loss

Once the separation between the two stars has decreased to the point where

the donor star can fill its Roche lobe, mass transfer can occur. Just as mass

transfer may be stable or unstable as classified in Section 1.2, it can also be

conservative or non-conservative.

Conservative mass transfer is the case where the total mass of the binary is

conserved. This means Ṁd + Ṁa = 0, thus all of the mass lost from the donor

is accreted onto the companion star. In most cases, conservative mass transfer

can represent an upper limit for the possible increase in mass for the accretor.

More importantly, it is not expected that conservative mass transfer will hold

in many circumstances.

Non-conservative mass transfer, on the other hand, is the case where the

total mass of the binary is not conserved Ṁd + Ṁa 6= 0. Mass is lost from the

system through mechanisms such as wind and limits in mass transfer. It is

argued the accretion rate is likely limited by the Eddington limit. The Edding-

ton limit is where gravitational force pulling material onto the companion is

balanced by the radiative force from the energy being released by the accretion.

It is often assumed a mass transfer rate above the Eddington limit results in

a fraction of the mass transferred being lost from the system with the specific

angular momentum of the accretor. The mass lost through the wind of the star

carries the specific angular momentum of the star where the wind originated.

It is important to note it is possible for accretion to exceed the Eddington limit

and super-Eddington accretion is thought to be a possibility for the formation

of ultra-luminous X-ray sources (Colbert and Mushotzky, 1999).
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1.4 Current Advancements

In case of both mass loss and angular momentum loss, the current prescriptions

used to describe the effects of these processes are not complete. The two

phenomena are connected in binary systems and in general, must be studied

together.

1.4.1 Improvements to Mass Transfer

In this work, we will be using an improved prescription of mass transfer devel-

oped by Pavlovskii and Ivanova (2015). This mass transfer prescription will be

used in Chapter 4 where the stability of mass transfer is uncertain. The key

features of this mass transfer scheme are the following:

• A more detailed treatment of the outer super-adiabatic layer. Specifi-

cally, it was found the donor star does not experience an aggressive ex-

pansion predicted by adiabatic considerations, resulting in more stable

mass transfer.

• The use of detailed geometry in calculating the nozzle size at the L1

Lagrange point and the use of optically thick flow of matter. Consider-

ation of a non-instantaneous mass removal, but of a stream determined

by conditions in the L1 neighbourhood allows for stability at higher mass

transfer rates.

An important point to make is a star is not required to remain within its

Roche lobe. In addition to these mass transfer changes, two additional criteria

for mass transfer stability are given in Pavlovskii and Ivanova (2015).

• If the donor star does not overfill its Roche lobe to the point of L2 over-

flow, the system is expected to be stable. This criterion has been con-

firmed by three-dimensional simulations where overflow of the L2 point
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quickly leads to a common envelope event (Nandez et al., 2014) or a

circumbinary disk. It is important to note simulations that have expe-

rienced L2 overflow result in dynamically unstable mass transfer and a

subsequent common envelope event. Observed binary systems such as SS

433 have been found to remain stable after this overflow (Bowler, 2010;

Perez M. and Blundell, 2010; Pavlovskii and Ivanova, 2015).

• Or, if the parameters of the binary orbit are changing rapidly, this may

invalidate the Roche formalism. The Roche formalism requires the cen-

trifugal term in calculating the Roche potential be much larger than the

Coriolis term, which is ignored in the formalism. If parameters such as

the angular velocity change substantially during evolution, the Coriolis

term becomes comparable to the centrifugal term causing the formalism

to break down (Sepinsky et al., 2007).

1.4.2 Improvements In Angular Momentum Loss

Improvements made to the angular momentum loss in this work will be done

through modifications in the magnetic braking prescription. These changes to

magnetic braking will only be used in future work.

The most commonly used form of Equation 1.9 used in calculations of low-

mass X-ray binaries is known as the Skumanich Law. The standard Skumanich

Law is using Equation 1.9 with γmb = 4. The Skumanich law corresponds to

the form of the magnetic braking that best matches the observed spin down of

main sequence G type stars.

The magnetic braking however, can depend on the wind mass loss in donor

stars, as it is not the same as the wind mass loss for the main sequence G type

stars, on which the original magnetic braking was calibrated. In addition, the

strength of a dynamo-generated magnetic field may depend on the convective

eddies turnover time τconv (see discussion in Ivanova, 2006). We use the pre-
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scription described in Pavlovskii and Ivanova (2015) that takes into account

these two effects:

J̇MB,boost =
Ṁw

d

Ṁ�

(
τconv

τ�conv

)ζ
J̇MB,sk (1.10)

This magnetic braking prescription has two additional scaling factors.

• Ṁw
d is the wind mass loss rate of the donor star. The wind mass loss

is related to the amount of mass corotating with the star through the

magnetic fields. In Equation 1.10, this value is scaled with the wind mass

loss of the Sun. This results in systems with super-solar wind mass loss

having boosted magnetic braking. Conversely, systems with sub-solar

wind mass loss rates have a damped magnetic braking.

• τconv is the turnover time of convective eddies found as following:

τconv =

∫ Rs

R

dr

vconv

, (1.11)

R and Rs are the bottom and the top of the outer convective zone respec-

tively, while vconv is the local convective velocity. The convective turnover

time is related to the strength of the magnetic field. The magnetic activ-

ity of the star scales with ND the dynamo number (Hinata, 1989; Meunier

et al., 1997; Parker, 1971). The dynamo number in turn, scales with the

convective turnover time in the form ND ∼ (Ωτconv)2 (Noyes et al., 1984).

The power ζ can vary, where ζ = 2 describes the same simplified assump-

tions for which Skumanich law is valid (i.e., radial magnetic field and isothermal

winds). ζ might be as high as 4, for the case, of giant’s winds, where velocity of

winds grows linearly with distance; we note though in this case, the dependence

on the angular velocity also has to be modified to become a power 5.

In the case of relatively fast rotating stars, about 10 times faster than the

Sun, it is argued the strength of the magnetic braking is weaker if compared
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to the standard Skumanich law. Indeed, in the case of a fast rotating star, the

magnetic field is no longer radial within the Alfven zone. Wind is then trapped

within the so-called “dead” zones and is not able to leave the star reducing the

loss of angular momentum (Ivanova and Taam, 2003). For stars rotating at

Ω > 10 Ω�, we adopt the scaling

J̇MB,sat = J̇MB,boost ×
Ω1.3 (10 Ω�)1.7

(10 Ω�)3
(1.12)

1.4.3 Areas of Ongoing Research

The mass transfer description given here is a simplified version of what happens

in nature. Woods and Ivanova (2011) looked at stability of mass transfer and

how adiabatic approximations effect this stability. Stability of mass transfer

to the so called delayed dynamical instability (Webbink, 1985; Hjellming and

Webbink, 1987) is also a topic of ongoing research. A change in the parameter

space where mass transfer is stable or unstable can greatly change the expected

results from binary evolution. With a greater number of unstable systems, we

would expect more instances of common envelope evolution or mergers.

Beyond the criteria for stability being researched, the physics of the ac-

cretion itself are not well understood. Due to the angular momentum of the

system, it is likely the flow of material from the donor to accretor forms an

accretion disc. The exact physics of the disc are an ongoing topic of research

and can affect how much mass will be accreted (see Lasota, 2007, 2016, for

more information on the physics of accretion discs.). In addition to the sta-

bility of mass transfer being uncertain, the stability of the accretion disc itself

is an area of ongoing research (see Lasota, 2001, for a review of disc instabil-

ity models). The stability of an accretion disc results in systems falling into

two categories of X-ray binaries, persistent and transient systems (Meyer and

Meyer-Hofmeister, 1981). In cases where the accretion disc is stable, the ac-

cretion disc does not experience outbursts and is therefore persistent. Systems
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which have an unstable accretion disc will undergo outbursts resulting in large

fluctuations in luminosity (Lasota, 2001; Coriat et al., 2012).

As explained in Section 1.3, gravitational radiation is well understood but

angular momentum loss through mass loss and magnetic braking are areas of

research. For massive stars where wind mass loss rates are most uncertain,

the rate by which the system loses angular momentum is poorly constrained

(Renzo et al., 2017). Magnetic braking, which plays a large role in lower mass

systems, is most uncertain in the magnetic field configuration, coupling with

the wind, and internal structure of stars for more massive systems. Currently,

there are different magnetic braking prescriptions being calibrated to work

with different systems. Examples of these magnetic braking schemes include

Chen and Podsiadlowski (2016) and Justham et al. (2006) which were created

for Ap/Bp stars, Ivanova and Taam (2003) which was designed for rapidly

rotating main sequence stars, Ivanova (2006) for pre-main sequence stars, and

Pavlovskii and Ivanova (2016) which was created for stars that have evolved

beyond the main sequence. These magnetic braking schemes are calibrated for

specific models and may not be applicable in dramatically different systems.

Therefore, it is possible through the evolution of a system, different magnetic

braking schemes may be more or less valid at different points. Without a more

unified scheme that transitions well from one prescription to another, there will

be errors in the amount of angular momentum lost.
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Chapter 2

Methods

2.1 MESA Code

All calculations for the single stars and for mass transferring binaries in this

work were performed using the one-dimensional stellar evolution code MESA 1

(Modules for Experiments in Stellar Astrophysics) revision 7736 in Chapter 4

and revision 8677 in the subsequent Chapters. MESA is a modern open source

set of stellar libraries as described in Paxton et al. (2011, 2013, 2015).

In this chapter, I will go over the implementations of mass transfer and

magnetic braking in MESA with a focus on the limitations of these prescriptions.

I will then explain the additions made to MESA in this work and where these

additions were applied in the work. Due to the frequency of MESA updates, the

descriptions presented in this chapter are for revisions 8677 unless explicitly

stated.

2.1.1 MESA Implementations of Mass Transfer

Within the default MESA package, there are three mass transfer schemes within

revision 8677. The effectiveness and use cases for the three schemes differ and

1http://mesa.sourceforge.net
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will be described below. In the current revision of MESA at the time of writing,

release 9575 includes a fourth mass transfer method used for contact binaries

(Marchant et al., 2016).

Ritter

Initially created by Ritter (1988) to model short-period semi-detached binaries

with a low mass companion, and designed to work in the case where Rd ≤ RRL.

This mass transfer prescription assumes the donor star will fill its Roche volume

and transfer mass through the L1 Lagrange point. This scheme applies an

exponential scaling factor to calculate the mass flow and is implemented within

MESA with the following set of equations:

Ṁritter = − 2π√
e

(
kbTd

µmp

)3/2
R3

RL

GMd

ρdF1eγritter

γritter = −γ
(

RRL − Rd

Hp

)
(2.1)

F1 = 1.23 + 0.5 log(qa), 0.5 ≤ qa ≤ 10

γ =

0.954 + 0.025 log(qa)− 0.038 log(qa)2, 0.04 . qa . 1

0.954 + 0.039 log(qa) + 0.114 log(qa)2, 1 . qa . 20

With qa = Ma

Md
, this differs from q = Md

Ma
, e being Euler’s constant, kb the

Boltzmann constant and proton mass mp. µ is the mean molecular weight, T is

the temperature and Hp is the pressure scale height. It is important to note the

pressure scale height used in the Ritter mass transfer equations is a modified

pressure scale height and is different from the normal pressure scale height. F1

and γ are two fitting functions where 1.07 ≤ F1 ≤ 1.73 and γ ∼ 1. For the

exact details on how this is derived, see Ritter (1988) and Mochnacki (1984).

This scheme was designed for optically thin flow where Rd ≤ RRL. However,

mass transfer continues to points where Rd < RRL. In MESA , the Ritter scheme
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continues to calculate mass transfer rates when Rd > RRL. In the cases where q

is outside the ranges given in Equations 2.1, the mass transfer rate is calculated

using F1 and γ at the edge of the respective boundary.

Kolb

The “Kolb” scheme builds upon the theories presented in Ritter (1988). Where

the Ritter scheme was designed for optically thin flow, the Kolb scheme was

expanded to explicitly include optically thick flow as well. Just as optically thin

flow is described as Rd ≤ RRL, optically thick flow is the inverse, Rd > RRL.

The additional treatment of optically thick flow in the Kolb theory is calculated

in MESA by:

Ṁkolb = 2πF1
R3

RL

GMd

∫ PRL

Pph

(
2

Γ1 + 1

) Γ1+1
2(Γ1−1)

Γ
1/2
1

√
kbTd

mpµ
dP (2.2)

Where the variables are the same as described in Equation 2.1, Γ1 is the adia-

batic coefficient, P is the pressure where the subscripts RL and ph denote the

Roche lobe and the photosphere respectively.

The optically thick term in the Kolb method does not play a significant role

on the mass transfer rate as long as the following conditions are met:

1. The mass transfer rate is sensitive to the difference between the radius of

the donor and the radius of the Roche lobe.

2. The pressure scale height of the outer layers of the donor star is small

compared to the radius of the star.

3. The change in radius of the Roche lobe and donor star are similar.

The optically thick term does not play a large role in our calculations as our

models satisfy all three of the above conditions. Due to the additional term
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that must be calculated in the Kolb method, the computational cost of this

prescription is greater than that of the Ritter prescription while resulting in

insignificant changes to mass transfer. Therefore, in this work we will be using

the Ritter prescription for mass transfer.

Roche Lobe

The Roche Lobe method does not calculate mass transfer rate based on the

properties of the star. Instead, this mass transfer method will adjust a mass

transfer rate such that Rd = RRL or in other words, the mass transfer is con-

strained so the radius of the star is exactly the radius of the Roche lobe. It is

not practical to constrain that the two values are numerically the same, instead,

they are calculated to within a tolerance value.

f(ṀRLOF) =
2(Rd − RRL)

RRL

+ ξimplicit (2.3)

Here ξimplicit is some tolerance value input by the user. Should f < −ξimplicit

then the mass transfer rate is set to zero and the binary is assumed to have

detached. Different values of ξimplicit can result in quite different solutions

(Paxton et al., 2015). As this mass transfer scheme is not motivated by the

properties and instead created to keep the donor within its Roche lobe, we will

not be using this mass transfer scheme.

2.1.2 Implicit and Explicit Mass Transfer

The above mass transfer schemes describe the equations used to calculate the

amount of mass transferred with given properties of the donor. Computation-

ally however, the calculations are done in discrete time steps and this results

in discrete changes to the stellar model instead of a continuous evolution. Due

to this, the mass transfer rate can be calculated at one of two points, at the

beginning of the time step or at the end of the time step. The case where the
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calculation is done at the beginning of the time step is known as “explicit”.

Conversely, “implicit” mass transfer is the case where the calculation is iterated

until it satisfies a “convergence” condition at the end of the time step. Both

Ritter and Kolb methods prescriptions of mass transfer can be either implicit

or explicit, while the Roche Lobe method can only be implicit. Both the im-

plicit and explicit calculations contain a smoothing parameter used to suppress

large oscillations that may arise. For explicit mass transfer:

Ṁs = Ṁiξexplicit + (1− ξexplicit)Ṁ (2.4)

where ξexplicit is some value between 0 and 1 affecting the averaging between the

mass transfer rate in the previous step Ṁi and the current mass transfer rate

Ṁ to produced a smoothed mass value Ṁs. If ξexplicit = 0 there is no smoothing

applied.

For implicit mass transfer:

∣∣∣∣∣Ṁs − Ṁf

Ṁf

∣∣∣∣∣ < ξimplicit (2.5)

Equation 2.5 is only used if the Ritter or Kolb scheme is being used implicitly

and will iterate the calculation. In the case where the Roche Lobe scheme is

being applied, Equation 2.3 is used instead. Similar to Equation 2.4, Ṁs is the

smoothed mass transfer value while Ṁ is the mass transfer rate calculated at

the end of the step.

An important distinction between the explicit and implicit methods can be

seen when we compare Equations 2.4 and 2.5. The explicit method takes an

average value but the implicit method requires numerical iteration to achieve

the condition given in Equation 2.5.
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2.1.3 Stability of Mass Transfer

Equations 2.4 and 2.5 both attempt to smooth out any numeric oscillations

that can appear but using “good” values for the ξ values in either equation is

an exercise in trial and error. For better or worse, MESA is a robust code that

does everything it can to avoid crashing. As a result, despite the user’s best

efforts, it is possible for numeric noise to dominate results. MESA will reduce

time step size until the solver within the code can converge on a result. This

reduction in time step directly leads to numerical oscillations, as with short

enough time steps any smoothing applied through the evolution is on a tiny

scale and lost. If the numerical noise is greater than the change in time step,

the models will still converge but the solution will be incorrect. In cases where

MESA quickly converges on a solution, the solver will increase the time step size,

possibly speeding up the simulation time. A caveat with large time steps is the

possibility of too much smoothing in the results. Should the time step be too

large or the smoothing be too aggressive it is likely that finer changes in the

properties of the star will be lost.

Within MESA there are “tolerance” options pertaining to numerical conver-

gence which define what the solver determines as “converged”. A larger residual

means the solver is less likely to force a reduction in time step as convergence

can be reached more easily. In theory, this should result in fewer oscillations

but in practice, things are less monotonic. The user must also be cautious in

allowing the code to move towards time steps that wash out finer details in the

evolution. While it is possible to set an upper limit to how large a time step

the code my use, similar to ξ or the options defining convergence, it is not a

simple task to determine a “best” value.

A simple example of how the mass transfer type, tolerances and maximum

time steps change the smoothness of the calculated mass transfer rate is shown

in Figure 2.1. The figure does not have numbers on the y-axis as this is meant

to only show the general shape of the curves. With the imposed offset on
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Figure 2.1: A simple comparison of the affects of limiting the time step and
changing tolerances on the smoothness of evolutionary tracks. The system
modelled with a 1.4M� point source accretor and a 1.1M� donor initially placed
at a 2.2 day period.

.

each subsequent curve, numerical values in the y-axis would not be useful. It

is important to note however that the maximum mass transfer rate in this

example system is ≈ 10−8M�yr−1. From this simple comparison, the explicit

mass transfer rate experiences larger oscillations than the implicit calculation

but the implicit method encounters more oscillations as visible in the later

portions of the evolution. The effects of the tolerances and time step limitations

is more visible in the right half of the curve where we can see more numerical

noise appearing when these parameters are used.

2.1.4 MESA Implementations of Angular Momentum Loss

The models described in Chapters 3 and 4 lose angular momentum through

gravitational radiation, mass loss and magnetic braking.
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J̇orb = J̇GR + J̇ml + J̇MB (2.6)

Gravitational Radiation

As mentioned in Section 1.3.2, gravitational radiation is likely the most well

understood form of angular momentum loss. Within MESA , it is implemented

in the same form as Equation 1.7.

Mass Loss

Mass can be lost from stars in a variety methods. The forms of mass loss

can range from tidal stripping removing large amount of mass from a star to

non-conservative mass transfer slowly removing mass. An example of an event

removing large amounts of mass is the fast mass loss we apply in Chapter 3

to create a semi-degenerate donor. This mass would carry significant angular

momentum from the system were it removed. Beyond this case in Chapter 3,

the majority of mass loss in this work will primarily be through stellar winds

and non-conservative mass transfer. Mass loss due to non-conservative mass

transfer is described by:

J̇ML = Ṁd,ejected

(
Md

Md + Ma

a

)2

Ω + Ṁa,ejected

(
Ma

Md + Ma

a

)2

Ω (2.7)

In this work our donor star does not accrete any material. This results in the

mass being ejected from the donor star to be entirely through winds, Ṁd,ejected =

Ṁd,w. The mass that is lost through the donor wind Ṁd,w leaves the system

with angular momentum of the donor. While the mass that is transferred

non-conservatively is given by Ṁa,ejected = Ṁd,L1 − Ṁaccreted. In the case where

accretion rate is equal to the Eddington limit, Ṁaccreted = ṀEdd, and the excess

mass flowing through the L1 point that is beyond the Eddington limit carries
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angular momentum of the accretor.

In principle if the accretor also loses mass through wind then an additional

Ṁa,w would be included in Ṁa,ejected. Uncertainties in the wind mass loss scheme

used will result in differences in amount of angular momentum losses (see Renzo

et al., 2017, for a thorough study of uncertainties in wind prescriptions for mas-

sive stars within MESA ). The other key source of uncertainty in Equation 2.7 is

using an appropriate Eddington mass accretion limit. An incorrect limit results

in large differences in mass transfer, see Section 2.2.2 for changes implemented

to MESA to properly calculate the Eddington limit in our case.

An alternative method in calculating mass loss from the system is the usage

of “efficiency” parameters (Soberman et al., 1997; Tauris and van den Heuvel,

2006). The amount of mass that is transferred in this case is denoted by

ε = 1− α − β − δ. Here ε represents the amount of mass transferred while α,

β, and δ correspond to the fraction of mass lost near the donor, the accretor

and through a circumbinary toroid respectively. In the case where the mass

transfer is completely conservative ε = 1 and α = β = δ.

Both implementations of non-conservative mass transfer can be used within

MESA . We will not be using the α, β, δ calculation and instead, only calculate

mass loss through Equation 2.7. This is because the efficiency parameters are

less physically motivated. We instead will allow non-conservative mass transfer

to be driven by limits of accretion and wind mass loss.

Magnetic Braking

As explained in Section 1.3.2, the default prescription for magnetic braking is

given by:

J̇MB,Sk = −3.8× 10−30MdR4
d

(
Rd

R�

)γmb

Ω3 dyne cm

while the default prescription is calibrated to G type main sequence stars,
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it can be applied to a wider range of systems. It is important to note this

magnetic braking scheme is expected to overestimate the angular momentum

loss in rapidly rotating systems (Ivanova and Taam, 2003) and underestimate

in cases where the donor has super-solar winds or a deep convective envelope

(Pavlovskii and Ivanova, 2016).

The default magnetic braking is implemented within MESA as shown in Equa-

tion 1.9. The various stellar properties required to calculate the magnetic brak-

ing are taken from the donor star while the γmb parameter is supplied by the

user as an initial condition. What is important to note is how the angular

velocity of the star is calculated. MESA requires the stars to be in tidal synchro-

nization to calculate magnetic braking. With this requirement, the angular

velocity becomes Ω = 2π
Porb

where Porb is the orbital period of the binary. The

resulting equation in MESA becomes:

J̇MB,Sk = −3.8× 10−30MdR4
d

(
Rd

R�

)γmb
(

2π

Porb

)3

dyne cm (2.8)

With the uncertainties in the formation and configuration of the magnetic field,

we will assume should the star develop a fully convective core, no magnetic

braking will take place, though magnetic braking may still exist in systems

with convective cores.

2.2 Additions Implemented in MESA

Within this work we implement modifications to MESA in areas of mass trans-

fer and magnetic braking. The changes to mass transfer were adapted from

Pavlovskii and Ivanova (2015) with additional changes to the calculation of

the Eddington limit. The changes to magnetic braking were adapted from

Pavlovskii and Ivanova (2016) and Ivanova and Taam (2003).
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2.2.1 Mass Transfer Additions

As explained in Section 1.4.1, the mass transfer prescription from Pavlovskii

and Ivanova (2015) applies more detailed calculations in determining the ef-

fects of the superadiabatic layer. It was found the recombination energy in

the superadiabatic layer plays a large role in determining the luminosity and

effective temperature of the star. Additionally, acceleration near the surface is

non-negligible and affects the pressure at the outer boundary of the star. These

changes to the star result in changes in stability of mass transfer.

The other set of changes implemented to mass transfer rate are in the

context of how to describe the geometry of the L1 Lagrange point as well as

the properties of the mass flowing through the nozzle. These improvements

implemented can be summarized into key features:

• The geometry outside of the Roche lobe was explicitly calculated and

tabulated. These calculations were done with higher order terms that

play a large role in surfaces of equipotential far from the Roche lobe

surface. These larger equipotentials are important for stars expanding

with substantial RLOF.

• Pressure correspondence is not assumed in these calculations. Pressure

correspondence is the assumption thermodynamic parameters at some

point in 3D are identical to those in 1D if the pressure at these two

points are equal. This assumption cannot be made if mass transfer is

high.

• Neither the donor nor the matter flowing through is assumed to be poly-

tropic. Instead flow is assumed to be adiabatic and instead uses equations

of state from within MESA to calculate the mixing and radiative pressure.

It is crucial to note all of these changes were implemented with MESA revi-

sions 7624. Unfortunately due to an overhaul of the treatment of hydrodynamic
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terms in a subsequent update we have not been able to port the mass transfer

changes to recent revisions of the code.

2.2.2 Changes to Eddington Limit

While not directly related to the calculation of the mass transfer rate, the

Eddington limit controls the amount of mass that may be accreted. Within

MESA the default calculation for the Eddington limit is:

ṀEdd =
4πGMa

cκe

. (2.9)

Where G is the gravitational constant, c is the speed of light and κe is the

opacity. In our work, we will use the opacity due to Thomson electron scat-

tering κe = 0.2(X + 1)cm2g−1, where X is the hydrogen mass fraction in the

matter being transferred. This Eddington limit assumes that the matter is

converted into radiation via Lx = εṀdc2, with ε being an efficiency value. The

prescription given in Equation 2.9 only applies to black holes and assumes that

the material being accreted onto the black hole is converted to radiation with

perfect efficiency. It is not possible for the matter to be converted into radiation

with perfect efficiency and a different equation should be used. If the system

uses a neutron star instead a different prescription is required. The luminosity

is calculated using Lx = GMdṀd

Rd
, the Eddington limit we use for neutron stars

is:

ṀEdd =
4πcRa

κe

≈ 3.4

1 + X
× 10−8M�yr−1 (2.10)

We assume Ra = 11.5 km as the radius of the neutron star 2. It is important to

note Equation 2.10 will also work for black holes with Ra = RISCO, where RISCO

is the radius of the innermost stable circular orbit. An additional efficiency

2Exact code used for implementation of this Eddington limit is in Section A.1.
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value may also be applied to Equation 2.10.

Different Eddington limit prescriptions have drastic effects to the end result

in binary systems if the mass transfer rate is high. A comparison between the

two Eddington limits is shown in Figure 2.2. The system being tested is a

binary with a 1.0 M� donor and a 1.3 M� accretor with an initial period of

7.59 days. We can see with a change in Eddington limit the accretor grows by

a much larger amount. The final mass of the accretor using Equation 2.9 is

1.73 M� and the accretor using Equation 2.10 is 1.35 M�.
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Figure 2.2: A comparison between the Eddington limit described by Equations
2.9 and 2.10. The dashed line is Equation 2.9 is the Eddington limit for Black
holes. The full line is Equation 2.10 which is the Eddington limit for Neutron
stars assuming Ra = 11.5km. The system being tested is a 1.0M� donor with
a 1.3M� accretor with an initial period of 7.59 days.
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2.2.3 Additions to Magnetic Braking

The default magnetic braking scheme used was calibrated for single sun-like

stars. This prescription is not expected to work well for binaries or for more

evolved stars. To try to improve the magnetic braking prescription we imple-

ment the theoretical changes suggested by Pavlovskii and Ivanova (2016) and

Ivanova and Taam (2003)3.

Additions From Pavlovskii and Ivanova (2016)

In the work of Pavlovskii and Ivanova (2016), they looked at how the wind

mass loss rate and the convective turnover time can change the strength of

magnetic braking. Magnetic braking can depend on the mass lost due to wind

in the donor stars. This effect is especially apparent if the wind mass loss rate

differs greatly from the wind mass loss rate from the Sun. The other source

of scaling explored in Pavlovskii and Ivanova (2016) is how the strength of the

dynamo-generated magnetic field can scale with the turnover timescale of the

convective eddies.

This is implemented within MESA with Equation 1.10. To account for the

solar wind scaling, we use a solar wind loss rate of Ṁ� = 2.5 × 10−14 M�yr−1

(Carroll and Ostlie, 2006). This translates to approximately 1.6× 10−12 gs−1,

which are the units MESA uses for wind mass loss rates within its calculations.

The convective turnover time τconv was found through a summation instead

of an integral:

τconv =
r=Rs∑
r=R

dr

vconv

(2.11)

In principle, we should take the summation from R to Rs where these represent

the bottom and surface of the outer convective zone respectively. vconv is the

3Exact code used for implementation of the changes in magnetic braking can be found in
Section A.2
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convective velocity in the cell dr. In practice the convective velocity becomes

very small near the surface of the convective zone and dominates the calcula-

tion. This results in large jumps in the turnover time that dominate the result.

To alleviate this issue, we require the outer boundary of the convective zone

be defined at the optical depth of 1 and the ratio between convective velocity

and the sound speed is small vconv

vsound
> 0.001.
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Figure 2.3: An example of how using a optical depth limit and velocity ratio
limit can change the resulting turnover time. The star tested here is a 1 M� star
evolved to near solar age to show oscillations in the turnover time.

Figure 2.3 shows how the optical depth limit and velocity ratio limit affect

the resulting turnover time calculation. In the figure, the solid cyan and dashed

black lines represent the two cases where there is no velocity ratio limiting.

The cyan line does not have an optical depth limit while the black line has

an optical depth limit of 1. The red line uses a velocity ratio of 0.001 and

no optical depth limit. The dashed blue line uses both the velocity ratio of
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0.001 and the optical depth limit of 1. From these four cases, we see requiring

the velocity ratio to be small greatly reduces the numeric oscillations in the

results. The optical depth on the other hand does not result in large changes.

To remain self consistent, the solar convective turnover time τ�conv was found

by evolving a default 1M� MESA model with Z=0.020 to 4.6 Gyrs. This results

in τ�conv = 2.8× 106 s.

Rotation Saturation

The rotation rate of stars is calculated using Ω = 2π
Prot

with Prot being the

period of rotation for the star. However, with tidal synchronization Prot =

Porb so the rotation period of the star is equal to the orbital period. From

Ivanova and Taam (2003) and Section 1.4.2, when stars reach high rotation

rates, the magnetic braking is expected to be dampened. Using the threshold

from Ivanova and Taam (2003) of Ω > 10 Ω�, equation 1.12 becomes:

J̇MB,sat = J̇MB,boost ×
(

2073600 s

10 P

)1.3

(2.12)

With the solar orbital period of 24 days or 2073600 seconds. Ω > 10 Ω� when

converted to period becomes P < 2.4 days. This will result in binaries with

periods shorter than 2.4 days to have magnetic braking which scales as J̇ ∝ Ω1.3

instead of the J̇ ∝ Ω3 scaling found in slow rotators.
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Chapter 3

Envelope Stripping

3.1 Introduction

Once a binary has been formed, the mass transfer can vary in stability and

thus, vary in mass transfer rate. It is also reasonable to assume many binaries

will circularize over the course of the evolution (Zahn and Bouchet, 1989).

However, depending on how the binary system was formed, it is possible for

a substantial amount of mass to be stripped from the donor star in a short

period of time. Should the binary be formed through what is known as a tidal

capture event, a large fraction of the donor star’s envelope may be stripped off

(Fabian et al., 1975).

In general, a tidal capture event occurs when a compact object and a donor

star come close enough together that kinetic energy from the compact object is

dumped into the donor star. This transfer of kinetic energy into the donor can

result in the entirety of the envelope being stripped off or, if the encounter is

close enough, a physical collision may occur (Bacon et al., 1996). However, if

the compact object cannot dump enough energy into the donor star, the binary

will not become bound.

In this chapter, we will be exploring dynamic formation channel of a binary

system consisting of a black hole accretor and semi-degenerate donor. This
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formation channel is novel in that it differs from the physical collision channel

which has been previously studied (Bacon et al., 1996). The key difference lies

in the amount of mass removed in the formation and in the physical collision

channel, the entire envelope of the donor star is stripped resulting in a black

hole with a degenerate donor. In the grazing case we explore, only a fraction

of the mass is stripped from the donor resulting in a semi-degenerate donor.

3.2 Stripping Method

In nature, stripping of the envelope should occur on the order of days. Unfor-

tunately, this type of change is difficult, if not impossible, to do in a 1D code

such as MESA . Smoothed particle hydrodynamics codes such as STARSMASHER

(Gaburov et al., 2010; Lombardi et al., 2011) can more easily strip stars, as

such we will be using a SPH code to predict the amount of mass to be stripped

off the donor. The evolution of the system post stripping must be done with

MESA instead of STARSMASHER as SPH codes cannot evolve a star.

To model the envelope stripping due to the tidal encounter in a consistent

way, a few steps must be taken:

1. Evolve a 1D single star to the specific evolutionary stage in isolation. In

this work, we evolved a 1M�, Z = 0.01 star until it expanded to 2R�.

2. Apply a rapid mass loss rate to the single star to obtain a semi-degenerate

donor with the same mass predicted by SPH simulations.

3. Place this stripped star in a binary system at the predicted binary sepa-

ration. The binary separation was taken from the SPH simulations which

resulted in the semi-degenerate donor.
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3.2.1 Caveats and Problems

While the process of stripping and modelling the stripped star appears straight-

forward, there are a variety of caveats to consider.

• There are large uncertainties with initial parameters in the evolution,

changing parameters such as overshooting and mixing can change the

properties of the star. Depending on how these mixing terms are applied

to the stellar model, the size of the convective core as well as the main

sequence lifetime of the star may differ. With larger amounts of mix-

ing, more fuel becomes available to the star during the main sequence

extending the lifetime.

• Mass stripping occurs on a very small timescale which can translate to

mass losses of ≈ 10M� yr−1. MESA cannot accommodate mass loss rates

this high and instead, we forced a mass loss of 1M� yr−1. It is important

to note the mass loss rate must be high enough the entropy profile of the

star does not change over the course of the stripping.

• MESA does not have a mass transfer prescription in the case for eccentric

binaries. As such, we will instead model the mass transfer at limiting

cases and two intermediate cases to estimate how the stripped star may

appear in this range. The limiting cases are taken from the SPH simu-

lations where the shortest period case sets the binary separation as the

distance at periastron. The largest binary separation used will be using

a binary separation with the same semimajor axis as found in the SPH

simulations.

Of these three primary problems, the issues with the high mass loss and

freezing the entropy profile are the largest issues in mass stripping. In our case,

as we use a 1.0M� donor star in our simulations and force fast mass loss on

the subgiant branch, the first caveat plays a smaller role than if our donor was
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a high mass star. The lack of MESA being able to simulate an eccentric binary

undergoing mass transfer may be alleviated by testing the limiting cases as

mentioned above.

The 1M� yr−1 mass loss is sufficiently large such that the entropy profile of

the donor star does not have sufficient time to readjust. A low-mass radiative

layer appears at the surface after envelope stripping. The low radiative layer

can be seen in Figure 3.1 in the cyan line. It is important to note the x

coordinate in the figure is stellar mass and the radiative layer is thin in mass.

Lower mass transfer rates are also shown in Figure 3.1 and mass transfer rates

that are too low result in the entropy profile readjusting.
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Figure 3.1: The entropy profiles of a Z = 0.01, 1 M� star at 2 R� prior to
fast mass loss represented in the black line and after losing mass at a variety of
mass loss rates. The cyan line shows the highest mass transfer rate we could
achieve in MESA . The three lower mass transfer rates show how an entropy
profile can readjust.
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We could not evolve our star through fast mass loss without the appearance

of a radiative layer. This outer radiative layer with mass ≤ 10−4M� causes the

radius of our stripped star to be larger than expected. For comparison, the star

shown in Figure 3.1 has a mass of 0.3M� and radius of 0.47R� after stripping.

A similar star stripped with STARSMASHER has a radius of 0.32R�. Attempts

at removing this radiative surface layer include using a much smaller time step

prescription as well as changing possible surface atmosphere prescriptions.

Forcing the calculation to smaller time steps will normally lead to numeric

issues if any physics occurs as the time steps shrink. To more safely force a

small time step, the user must allow for a “relaxation” phase where minimal

evolution occurs1. Shrinking the time step still resulted in a thin radiative layer

on the surface of the star. The small step size also caused numeric oscillations

resulting in fluctuations in effective temperature and luminosity.

Various atmospheric boundary conditions are available in MESA which con-

trol how various properties such as pressure and temperature are calculated at

the surface as well as where to do these calculations. Among the boundary con-

ditions available, only a subset of them are theoretically valid for these studies

(see Paxton et al., 2011, 2013, for more information on the various atmospheric

boundary condition options.).

• “Simple Photosphere” is the default option where values of the atmo-

sphere are estimated at an optical depth of τ = 2/3.

• “Photosphere Tables” uses a set of precalculated tables within MESA for

the photosphere.

• “Grey and Kap” uses a prescription where a simple grey atmosphere is

calculated to find a consistent pressure, temperature and opacity at the

surface.

1See Section B.1 for a sample inlist.
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• “Eddington Grey” integrates hydrostatic balance equations using the Ed-

dington T− τ relation (Eddington, 1926).

These four atmospheric conditions resulted in different properties in the

star but in all cases, the radiative surface layer persisted and the star had a

larger radius than expected from the 3D simulations.
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Figure 3.2: The change in radius of the donor star as it is quickly stripped of
mass. The vertical black line represents the point where we stop the fast mass
loss and place the donor in a binary system.

On the one hand, this surface layer may be capable of losing energy radia-

tively at the timescale of one year, the same timescale at which we lose mass

with MESA . Therefore, it may be possible this radiative outer layer is physically

motivated. The 3D code used cannot model the loss of energy via radiation

and the mass loss rate was an order of magnitude faster than what was used in

MESA. It may be possible due to the difference in mass loss rates the star was
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able to thermally adjust in the case of the MESA model and is not expected to

occur in nature. We will not argue if this radiative layer is physically reasonable

or not. In both cases however, this outer layer does not dynamically affect the

shrinkage of the binary and therefore does not drastically change our results.

3.3 Applications and Results

The grazing encounter formation scenario presented is a possible formation

channel of black hole binaries with a semi-degenerate donor. In this case, a

low-mass star would have a large portion of its mass stripped in a grazing

tidal encounter soon after it has evolved off the main sequence. It is important

to note the entire envelope of the donor star is not stripped off, this is the

key differentiating factor between this formation scenario and physical collision

formation channels considered elsewhere (example. Ivanova et al., 2010). In

the work for Ivanova et al. (2017), we looked at a donor star with an initial

mass of 1M� in an eccentric orbit with a 7M� black hole. The donor star has

a metallicity of Z=0.01 and is allowed to evolve until it has a radius of 2R�.

Once the donor star has reached this radius, it is subjected to a 1M� yr−1 mass

loss rate to aggressively strip off 0.7M�. It is important to note the mass loss

is still not sufficiently high enough to mimic what we would expect in nature.

Once the fast mass loss is completed we model the remaining donor star in a

binary with the black hole. The binary evolution tracks are shown in Figures

3.3, 3.4 and 3.5. The evolutionary track is also shown in a black dashed line

for comparison purposes.

From the results shown in Figures 3.3, 3.4 and 3.5, we see our stripped

stars will differ from unperturbed stars with a similar color. We determine

how underluminous our stripped star is by taking the difference between the

stripped star Mstrip
V and the unperturbed star Mnorm

V at the same color δMV =

Mstrip
V − Mnorm

V . In the case of the 0.3M� star in Figure 3.3 at B-V = 0.8,
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Figure 3.3: A plot comparing the evolution of the 1M� star if it remained
unperturbed, evolved as a single star after stripping and as a stripped star in
a binary system. The black solid line shows the evolutionary track of a 1M�
star without stripping. The position of the 1M� and 2R� subgiant prior to
the stripping is indicated with the red circle. The location of the stripped
star immediately after the stripping down to 0.3M� is indicated with the blue
circle. The black dashed line shows the evolution of the stripped star as a
single star. Tracks with the colors show the evolution of the stripped star in
a binary system. The colors of the tracks indicate instantaneous characteristic
timescales, such that it takes to change either the magnitude M V by one or
color BV by 0.2. The initial orbital periods are Porb = 0.21, 0.54, 0.97 and 1.46
days.
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Figure 3.4: The same plot as Figure 3.3 but instead with the case of stripping
the donor down to 0.4M� with initial periods of Porb = 0.32, 0.88, 1.62 and
2.48 days.

the stripped star is underluminous δMV & 2 for tens of millions of years after

stripping and underluminous 2 & δMV & 1 for ∼ 3 × 108years. Similarly, the

0.4M� stripped star is underluminous δMV & 1 for ∼ 1.5 × 108 years. The

0.5M� star is also redder than the single star and if we instead compared the

stripped star to the unperturbed star at redder colors, it is underluminous

δMV & 2 for ∼ 8 × 108 years. With this in mind, in cases where a red star

is found to be underluminous, δMV & 1 may be an indicator of this grazing
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Figure 3.5: The same plot as Figure 3.3 but instead with the case of stripping
the donor down to 0.5M� with initial periods of Porb = 0.42, 1.98, 4.22 and
6.95 days.

formation. This stripping of the envelope requires a grazing encounter with a

compact companion and as such, an underluminous red star may also indicate

the existence of a black hole.
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Chapter 4

Stability of Mass Transfer in

High Mass Donors

4.1 Introduction

With the detection of gravitational wave signals (Abbott et al., 2016a,b, 2017),

the understanding and verification of compact object binary mergers is impor-

tant for constraining possible formation channels. The published detections so

far have been for black hole-black hole binaries but as the detectors increase

in sensitivity, the possibility of detecting less massive compact objects in these

mergers increases (Chen and Amaro-Seoane, 2017). Currently, there are a va-

riety of possible methods in forming binary black holes. Binary black holes can

form through dynamic interactions within a globular cluster (Rodriguez et al.,

2016) or in isolation. Two dominant channels may form isolated binary black

holes: chemically homogeneous evolution (de Mink et al., 2009; Mandel and de

Mink, 2016; Marchant et al., 2016) and common envelope evolution (Belczynski

et al., 2010).

In the second formation channel, the common envelope event is required to

reduce the separation between the two stars. For a common envelope event to

occur, the binary must undergo a period of dynamically unstable mass trans-
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fer (see Ivanova et al., 2013, for a review on common envelope events). Using

standard mass transfer stability criteria, systems with large mass ratios are ex-

pected to undergo dynamically unstable mass transfer and result in a common

envelope event. Binaries which undergo the a common envelope event may

produce a tight black hole black hole binary which will merge in Hubble time.

However, if the mass transfer is stable, no common envelope event will occur

and should a black hole black hole binary be formed, it will be too wide to

merge within Hubble time.

4.2 Stability Criteria

For binary black holes, mass transfer during a massive star’s evolution through

the Hertzsprung gap was argued to initiate the runaway mass transfer required

for common envelope evolution. Runaway mass transfer normally occurs in

binaries where the donor star does not shrink sufficiently quickly while under-

going Roche lobe overflow. As explained in section 1.2.1, the response of the

donor is linked to the entropy profile of the star. Stars with large convective

envelopes have a flat entropy profile where the response of the donor to mass

loss is radial expansion. Should the mass transfer start after the donor has

developed a deep convective envelope, the mass transfer will be unstable. An-

other possibility for rapid expansion during mass loss is if mass transfer occurs

as the donor undergoes rapid thermal timescale expansion as a result of its

stellar evolution. In Pavlovskii et al. (2017) these points of instability are given

as critical radii:

1. Expansion Instability (RS): This occurs if mass transfer starts as the

donor is experiencing thermal timescale expansion. This occurs after the

main sequence evolution as the star rapidly expands as it moves onto the

Red giant branch. Mass transfer is stable if the donor star has exceeded

a radius RS at the onset of Roche lobe overflow.
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2. Convective Instability (RU): This occurs if mass transfer starts after the

donor has developed a deep convective envelope. This results in a flat

entropy profile and results in the donor star insufficiently shrinking during

mass loss. Mass transfer is stable if it occurs prior to the development of

the deep convective zone. This is defined as a critical radius as the star

cannot exceed RU at the onset of Roche lobe overflow.

As mentioned in Section 1.2.1, it is possible for donor stars to start mass

transfer in the stability region, RS < R < RU, but encounter instabilities later

in the evolution. It is uncertain if a system will encounter this instability prior

to running the simulation.

4.3 Binary Simulations

To calculate the evolution of the binary systems of interest and the stability of

mass transfer at Roche lobe overflow, the improved mass transfer prescription

described in Section 2.2.1 and Pavlovskii and Ivanova (2015) are used. These

models were run using MESA version 7736 and MESA SDK version 245. The

initial donor masses tested were 20, 30, 40, 60 and 80 M�with solar Z=0.02

and 0.1 Z�compositions. The donor stars evolve using the “Vink” prescription

within MESA (Vink et al., 2001). Eruptions and enhanced winds during the

luminous blue variable phases are not accounted for. The accretor in each of

these binary systems is a black hole with mass between 7M�and 14M�with a

wide range of initial separations tested. It is important to note the evolution of

massive stars is very sensitive to the input parameters used. In this work, what

is important are the properties of the star at the onset of Roche lobe overflow

and it is possible for a range of input conditions to reach this same point.
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Table 4.1: Critical Radii For Mass Transfer Stability.

Md,ZAMS MBH RS Md,S MHe,S Hsh,S Hec,S RU Md,U MHe,U Mconv Teff,U Hsh,U Heco,U

Z = 0.1Z�
20 7 stable 686-721 19.6 7.0 1.8-3.8 4369-4251 X X
30 7 44-51 29.4 7.7-7.6 X – 1004-1111 29.1-29.2 8.1-8.2 1.6∗-3.9 4483-4268 X X
40 7 309-354 38.6 11.5 X X 1260-1327 38.6-38.7 11.4 1.7∗-2.7 5244-5709 X X
60 7 unstable
60 10 346-364 56.8 20.4-20.5 X – 1705-1790 56.8 19.8 6.0∗-6.9∗ 4473-4387 X X
60 12 140-156 56.8 21.1-20.9 X – 1768-1879 56.8 19.8-19.7 6.8∗-8.2∗ 4409-4323 X X
80 7 unstable
80 10 stable 2217-2241 74.5 32.6 18.2∗-18.2∗ 4285-4276 X X
80 14 134-155 74.6 34.6-34.3 X – 2122-2179 74.5 32.7-32.6 18.2∗-18.2∗ 4345-4304 X X
Z = Z�
20 7 stable 729-743 19.6 5.7 2.3-2.7 3936-3886 X X
30 7 stable 1144-1174 26.6 9.8 5.0∗-5.5∗ 3835-3789 X –
40 7 stable 1381-1434 32.5 14.7 4.4∗-5.2∗ 3872-3804 X –
60 10 stable 2035-2172 41.0 23.8 3.7∗-5.0∗ 3868-3776 X –
60 12 stable 2009-2057 41.0 23.8 3.5∗-3.9∗ 3886-3851 X –
80 10 stable stable
80 14 stable stable

Notes. Md,ZAMS is the mass of the donor at zero age main sequence (ZAMS), MBH is the mass of the

accreting black hole. RS is the radius where the donor star is stable to expansion instability. The lower

limit represents the largest radius where expansion instability occurs while the upper limit is the largest

radius where the donor can still stably transfer mass. RU is the radius where the donor star is stable to

convective instability. The lower limit represents the largest radius where the donor can stably transfer

mass while the upper limit is the smallest radius where the donor has unstable mass transfer. Md,S and

Md,U are the masses of the donor at the corresponding radius. MHe,S and MHe,U are the helium core

masses of the donor at the same moment. The boundary of the core is defined as the mass coordinate

where hydrogen is below 0.01 × (1 − Z). Check marks under Hsh,S, Hec,S, Hsh,U, and Hec,U indicate

burning is occurring in the hydrogen shell or helium core. Mconv is the mass of the outermost convective

layer, an asterisk next to a mass in this column denotes radiative layers exist within the convective zone.

Teff,U is the effective temperature at the upper and lower radius values of RU. If the donor star is always

unstable, it is denoted with “unstable”. Stable stars to either type of instability are denoted with “stable”

in the appropriate column. All mass values are given in M�, radius in R�, and temperatures in K.
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4.4 Results

Table 4.1 (adapted from Pavlovskii et al., 2017) shows the results of the sim-

ulations run. The radii given for the two stability boundaries, RS, and RU

represent the extrema in radius for stability or instability. In the case of RS the

lower limit is the largest unstable value while the upper limit is the smallest

stable value. For convective instability RU this is opposite, the lower limit is

the largest stable radius while the upper limit is the smallest unstable radius.

At solar metallicities, if mass transfer occurs after the end of the main

sequence the mass transfer is found to be stable. This can be seen in the

bottom half of Table 4.1 where all systems with Z = Z� are stable in the RS

column. Systems with sub-solar metallicities vary in stability to the expansion

instability. However, in general, systems with lower mass ratio are more stable

as can be seen in Table 4.1. The two systems that are always unstable have

mass ratios of q & 8.5 while systems with lower mass ratios show ranges of

stability. This is well understood as increasing q results in larger ζRL. With

the criteria for unstable mass transfer being ζRL > ζad, larger ζRL values result

in systems which are more likely to be unstable (Soberman et al., 1997).

Convective instability appears in systems that have developed a deep con-

vective envelope. Again solar metallicity donors are more stable than the sub-

solar systems. This is a result of higher metallicity systems having stronger

winds which increase the stability of mass transfer in these systems. An exam-

ple of this can be seen when comparing the 80M� systems in Table 4.1. The

solar metallicity systems have strong enough winds suppressing the develop-

ment of a deep convective envelope and are always stable to this instability,

while the sub-solar metallicity case has a range of possible radii. An interesting

property of this instability is that many of the systems encounter this instabil-

ity while there are radiative layers embedded within the convection zone and a

single large convective envelope is not necessary.
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In Pavlovskii et al. (2017), it was found in the cases where mass transfer

begins between these two instabilities, the mass transfer will remain stable.

Unless the system reattaches later during its evolution and encounters a delayed

dynamical instability, these systems will not undergo a common envelope phase.

Without the common envelope evolution, the binary cannot shrink to a radius

where a binary black hole merger may occur.

4.4.1 Ultra Luminous X-Ray Sources

With the stable but high mass transfer rates, we can expect the systems to

emit large amount of X-ray radiation. Converting mass transfer rate to X-ray

luminosity we can use:

LX =
Ṁc2

2f
(4.1)

With Lx being the X-ray luminosity and f representing the inefficiency of

the energy being converted from mass. With an inefficiency factor of f = 1,

the luminosity can approach 1039erg s−1 when the mass transfer is a modest

3×10−8M� yr−1. It is important to note the inefficiency factor of f = 1 should

represent an upper limit and is unlikely for f to reach this value.

Instead of an inefficiency factor, Thorne (1974) used an “efficiency” factor

which does not account for the mechanical energy nor advection. This efficiency

factor is effectively ε = 1
2f

and was found to range from ∼ 0.06 to ∼ 0.42 for

a non spinning and maximally spinning black hole respectively. This converts

to f ∼ 1.2 for maximally spinning and f ∼ 8 for non spinning black holes. To

achieve a luminosity of 1039erg s−1 a mass transfer rate & 3× 10−7M� yr−1 is

required for the low efficiency case. For the maximally spinning black hole, a

mass transfer rate & 4.2× 10−8M� yr−1 is necessary.

In many cases the models tested, can exceed mass transfer rates of 10−8M� yr−1,

resulting in very large X-ray luminosities. Systems exceeding a luminosity of
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Figure 4.1: A sample of the mass transfer in a binary with a 20 M� giant and a
7 M� black hole. The gaps in the evolution track are when the donor detaches.
The figure is taken from Pavlovskii et al. (2017).

1039erg s−1 are classified as ultra luminous X-ray (ULX) sources. We can see

from Figure 4.1 the mass transfer rates easily exceed those required to reach

the ULX threshold luminosity. On the other hand, we also find the models

being tested do not spend long periods of time in this “ULX state” of high

X-ray luminosity averaging 105yr as the time spent with high luminosity.

4.5 Applications

As a result of an increased parameter space where stable mass transfer may

occur, the expected number of merging binary black holes through this forma-

tion channel decreases, while the number of ULXs has increased. In the case

for ULXs, our models may give a formation channel for the most luminous of

ULXs.

Figure 4.2 compares the ULXs found in these simulations against observed

ULXs nearby. It is important to note the two separate histograms are averaged

48



by their respective number of ULXs. With this in mind, our results are not

suggesting a large fraction of ULXs are missing from observations with lumi-

nosities > 1040erg s−1 but instead, our simulations favour higher luminosity

results. To reproduce the entire observed sample of ULX sources, additional

formation channels are required to produce the binaries found from 1039erg s−1

to 1040erg s−1.

Similarly when applying the new parameter space of stable mass transfer,

estimates can be made for the number of black hole merger events we can

expect. The LIGO collaboration estimates a stellar-mass binary black hole

merger rate in the range of 9−240 Gpc−3yr−1 (Abbott et al., 2016c). Belczyn-

ski et al. (2016) found a merger rate of & 1000 Gpc−3yr−1 prior to accounting

for this parameter space with stable mass transfer. A significant fraction of

stellar black hole-black hole mergers were initially found to be through this

common envelope event channel. With this additional stability range in high

mass donors, a drastic decrease in expected binary mergers was found. Us-

ing the STARTRACK population synthesis code to approximate the effect of this

stability range, we can quantify the change in expected binaries. For solar

metallicity donors, the number of predicted black hole-black hole binaries pro-

duced decreased by a factor of 750, while the sub-solar donors decreased by a

factor of 14. Once this stability region is accounted for, the production rate of

black hole-black hole mergers decreases to 220 Gpc−3yr−1, a value within the

range found by Abbott et al. (2016c).
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Figure 4.2: A time averaged distribution of ULXs formed in the simulations
using conservative mass transfer are given in the red. The observed distribu-
tions of ULXs within 5 Mpc are shown in the hatched area (Gladstone et al.,
2013). The figure is taken from Pavlovskii et al. (2017).
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Chapter 5

Reliability of Current

Prescriptions

5.1 Reliability of Roche Lobe Mass Transfer

Within the methods used in this work, there are inherent assumptions made

with how various physical processes are treated. MESA (Paxton et al., 2011,

2013, 2015) is a one-dimensional stellar evolution code which assumes spher-

ical symmetry and the various stability criteria used only apply in this one-

dimensional case. While the assumption of spherical symmetry may be valid

in many cases for a star, the outflows of mass from the star are not spheri-

cally symmetric and this lack of symmetry may play a role in the mechanics

of the outflow. Therefore, the mass transfer rate in MESA represents our best

understanding of how streamlines which are formed near the L1 point carry

matter.

Beyond the calculation of how mass is transferred, the response of the donor

and accretor to the mass transfer is also subject to uncertainties at high mass

transfer rates. In the context of this work, the accretor star’s only response

to mass transfer should be how conservative the process of mass transfer will

be. As shown in Section 2.2.2, changes to the Eddington limit result in drastic
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changes to the amount of mass lost from the system. With a lower Eddington

limit, a smaller amount of mass can be deposited onto the accretor. The

difference in mass also affects where the angular momentum of this material is

deposited (Priedhorsky and Verbunt, 1988). In the cases where more matter

can be accreted onto the compact object, it is possible to spin up the accretor

while material lost removes angular momentum from the system.

The largest point of uncertainty is the donor star’s response to mass loss.

Section 1.2.1 explained depending on the response of the donor star to mass

loss, the mass transfer can be dynamically unstable and lead towards a common

envelope event or merger event. The mass loss which occurs between thermal

and dynamical timescales and the response of the donor to this mass loss is

perhaps the most important point in determining the stability. This is the

mass loss where proper treatment of the super-adiabtic surface layer has an

effect on stability. As explained in Sections 1.2.1 and 1.4.1, the stability of

mass transfer at higher values may be overestimated in stars with radiative

envelopes and underestimated in stars with convective envelopes. In nature,

the outermost portion of the envelope of stars is superadiabatic and transports

energy inefficiently through convection. Instead, this outer layer transports

energy via both radiative and convective processes. Due to this, the entropy

profile of this outermost layer is not flat like the convective envelopes of the

star. With this change in entropy profile, the star instead initially contracts as

it loses mass.

The outer superadiabatic surface layer of stars can also readjust on timescales

shorter than the thermal timescale of the star itself. Therefore, it is possible

the surface of the donor star has sufficient time to thermally relax and adjust

allowing for the reformation of the superadiabatic layer. As long as the su-

peradiabatic layer can persist, the mass transfer is expected to be more stable

(Woods and Ivanova, 2011; Ge et al., 2015).

There are no fully self-consistent prescriptions of mass transfer via Roche
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lobe overflow in three-dimensions. However, recent work has been slowly mov-

ing towards being able to simulate mass transfer in 3D (Church et al., 2009;

Bobrick et al., 2017). With the uncertainties in mind, previous work has shown

theoretically calculated values for mass transfer rate are much lower than those

found in observations in cases with non-degenerate donors (Podsiadlowski et al.,

2002). From the results seen from Podsiadlowski et al. (2002) and Pavlovskii

and Ivanova (2016), we see default prescriptions in generating these systems do

differ from observed mass transfer rates by an order of magnitude. It is unlikely

however, this can be attributed to issues in stability as the observed values for

these systems are on order ∼ 10−8 − 10−7M� yr−1, which is still in the regime

where the mass transfer is stable and not large enough to encounter dynamic

instability. Looking at observed binaries from Liu et al. (2007), Heinke et al.

(2007, 2009, 2013) and Watts and Krishnan (2009), we see the mass transfer

rates again are < 10−8M� yr−1 which are too low for dynamically unstable

mass transfer rates.

With these uncertainties, systems are expected to result in mass trans-

fer rates lower than observed rates. In cases where the donor star is a non-

degenerate donor, the discrepancy between theoretically produced values and

observed mass transfer rates is not as great. From Podsiadlowski et al. (2002)

and Pavlovskii and Ivanova (2016), the main source of discrepancy is expected

to be uncertainties in angular momentum loss. Changing the magnetic braking

in Pavlovskii and Ivanova (2016) from default to a boosted prescription resulted

in values that better matched observations.

5.2 Reliability of Magnetic Braking

Noted as early as Verbunt and Zwaan (1981), differences in strength of the

magnetic field strength results in large changes in the mass transfer rate in bi-

nary systems. With the default magnetic braking prescription being calibrated
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for single Sun-like stars, it is expected if we deviate too far from these types of

systems, the reliability of the default magnetic braking scheme is also expected

to decrease (Skumanich, 1972). In general, it has been found the default pre-

scription overestimates the angular momentum lost in quickly rotating systems

(van der Sluys et al., 2005). In these cases, a dampening effect is suggested to

reduce the strength of the magnetic braking as the strength of the magnetic

braking becomes saturated (Mestel and Spruit, 1987; Andronov et al., 2003;

Ivanova and Taam, 2003).

On the opposite end of the spectrum, giant stars appear to have their an-

gular momentum loss underestimated by the default magnetic braking and

should lose angular momentum more quickly (Smith, 1983). In cases with gi-

ant donors, the effects of greater winds and how convective eddies within the

star modify the magnetic field strength translate to magnetic braking is not

well described with the default prescription (Pavlovskii and Ivanova, 2016).

Reiterating examples of magnetic braking schemes from Section 1.4.3, there

are a variety of magnetic braking prescriptions tailored for a variety of different

systems.

Examples of this are the prescriptions in Pavlovskii and Ivanova (2016)

and Ivanova and Taam (2003). The prescription described in Pavlovskii and

Ivanova (2016) is given by equation 1.10 and contains additional scaling with

turnover timescales and wind mass loss rates. These additional terms cause the

strength of magnetic braking to be reduced in stars with sub-solar winds and

convective turnover times and boosted in stars with super-solar values. From

Ivanova and Taam (2003), equation 1.12 contains additional scaling based on

the rotation rate of the star. Combining the default prescription with these

additional scaling terms should, in theory, result in reduced values at shorter

periods and boosted values with giant stars compensating for the discrepancies

found with the default Skumanich model.

In the work described in Chapters 3 and 4 we used the default Skumanich
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model for magnetic braking. One would expect the angular momentum loss

may be overestimated for the short period binaries in Chapter 3 and underes-

timated in the giant donors from Chapter 4.

For the systems tested in Chapter 3, gravitational radiation is becoming the

dominant mechanism for angular momentum loss and not magnetic braking. In

systems where the binary separation is on the order of a few R�, gravitational

radiation becomes dominant. In the case where angular momentum loss is

over estimated, the amount of time taken for the onset of mass transfer would

increase. Beyond this, the amount of time spent in each portion of the color

magnitude diagram would likely not differ greatly as the mass transfer rate in

these areas is already low.

In Chapter 4, the stability criteria depends on the point in evolution where

mass transfer starts. If mass transfer occurs within the stability region, then

we expect mass transfer to remain stable regardless of magnetic braking pre-

scription. As such, our choice of magnetic braking does not affect our final

result in determining regions of stable mass transfer.

While the work described above is not greatly affected by choices in mag-

netic braking, studies involving long lived steady state mass transfer are. Changes

in the γmb value result in large changes in the binary evolution (Rappaport

et al., 1983). While γmb = 4 is commonly used as it reproduces the spin down

of G type main sequence stars, other γmb values have been used. γmb = 3

has been used by Knigge et al. (2011) to produce cataclysmic variables while

γmb = 5 was recently applied by Istrate et al. (2014) to form ultra-compact

systems. A “best” choice in γmb may be difficult to determine prior to testing a

variety of γmb values. Beyond these uncertainties with the used prescription of

magnetic braking, it is possible prescriptions created for similar systems may

result in drastically different results (Knigge et al., 2011).

Uncertainties in the stability of mass transfer rate results in systems of

high mass transfer incorrectly predicted to be unstable. This results in un-
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derestimating the number of high mass transfer systems in simulations when

compared to observations. Another possible source of this discrepancy is likely

a lack of understanding behind the mechanics of magnetic braking. Instead,

the uncertainties in mass transfer rate relate to the stability of the mass trans-

fer and will likely play a role in higher mass transfer rates. Improvements to

the response of the donor star as mass transfer occurs will affect the proper-

ties of the binary but without testing the models with these changes to donor

response, it is uncertain how these binaries would differ. The uncertainties

from magnetic braking prescriptions have overarching effects on the results of

models. Magnetic braking models are created and calibrated to subsets of sys-

tems and cannot be applied to the entirety of a binary system’s evolution. A

more complete prescription of magnetic braking is required in order to make

definitive claims about theoretical models.
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Chapter 6

Summary and Conclusions

In this thesis, we explored a variety of topics related to binary evolution ranging

from how interactions prior to mass transfer can drastically change the outcome

of the system in Chapter 3 to the stability of mass transfer in Chapter 4.

We find in cases where a binary is dynamically formed through a grazing

tidal encounter, a process that strips off a large portion of the outer envelope,

the resulting binary differs greatly from an unperturbed star. In the case

where the star has undergone this grazing tidal encounter, the resulting semi-

degenerate donor may be underluminous by up to two orders of magnitude for

several million years depending on the amount of mass lost. A caveat of this

result however, is the stellar evolution code used, MESA , is not designed for

the high mass loss rates required to strip the envelope. As a result of this, we

could not remove the envelope at a rate higher than 1M�yr−1. In addition to

the lower than ideal mass loss rate is the formation of a low mass radiative

surface layer in the semi-degenerate donors. It was found in 3D simulations

the resulting semi-degenerate star would be 0.32R� while the thin radiative

envelope on our donors result in a larger 0.47R� radius. It is unknown if this

outer radiative layer is physically motivated as the 3D code does not model

energy loss through radiation while the 1D code cannot reach the required mass

transfer rates. Regardless of this, the outer layer does not affect the shrinkage
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of the binary and as such, does not drastically change our result. Therefore, we

propose an underluminous red star may indicate the star underwent a grazing

tidal encounter.

In Chapter 4, we looked at the stability of mass transfer in binaries with a

high mass donor. Recently, with the detection of gravitational waves (Abbott

et al., 2016a,b, 2017), constraining and understanding the formation of systems

which can produce possible compact object mergers has become an important

topic of research. One of the key formation channels to produce compact binary

mergers involves a common envelope event and as such, requires unstable mass

transfer. We found the stability of mass transfer in these systems relied heavily

on mass transfer occurring between two points of instability:

1. Expansion Instability (RS): The point in evolution where the star under-

goes rapid expansion after leaving the main sequence.

2. Convective Instability (RU): The point in evolution where the star has

developed a deep convective envelope. Stars with a deep convective en-

velope do not shrink a sufficient amount during mass loss.

If the mass transfer occurs between these two points, RS < Rd < RU then mass

transfer is initially stable. Applying the improved mass transfer prescription

from Pavlovskii and Ivanova (2015), we found many systems experience stable

mass transfer despite having very large mass ratios. If mass transfer is stable

in these systems, it is unlikely they will result in a gravitational wave signal as

the two compact objects are not close enough without undergoing the common

envelope phase. Instead, a portion of these systems which were initially thought

to result in gravitational wave signals will instead result in X-ray binaries. With

such high mass transfer rates, the resulting X-ray luminosity of these systems

is 1040erg s−1 which places our systems in the range of ultra luminous X-ray

sources.
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Appendix A

Custom MESA Routines

In this section I include the code used to modify or extend the capabilities

of MESA . To use these additions the user must copy the respective subroutine

into run binary extras.f and point to the subroutine in the code. These

changes were applied to MESA 8677 and in principle should be applicable to

other version of MESA as well, with the quick revision cycles with MESA updates

variable names may change from one version to another.

A.1 Implementation of Eddington Limit

subrout ine mdot edd rout ine ( b inary id , mdot edd , i e r r )

use cons t de f , only : dp

in t ege r , i n t en t ( in ) : : b i na ry id

r e a l (dp ) , i n t en t ( out ) : : mdot edd

in t ege r , i n t en t ( out ) : : i e r r

type ( b i n a r y i n f o ) , po in t e r : : b

i e r r = 0

c a l l b ina ry pt r ( b inary id , b , i e r r )

i f ( i e r r /= 0) then

wr i t e (∗ ,∗ ) ’ f a i l e d in b ina ry pt r ’
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re turn

end i f

! changing mdot edd from de f au l t MESA from BH to NS

! x c t r l ( 5 ) i s the rad iu s o f the NS

! mdot edd = 4∗ pi ∗ c l i g h t ∗b% s1% x c t r l (5)/&

! (0.2∗(1+b% s1% su r f a c e h1 ) )

! hard coding in the rad iu s o f 11 .5km in to the

! equat ion r e s u l t s in the next l i n e .

mdot edd = 2.1666 d18 / ( 1 . d0 + b% s1% su r f a c e h1 )

end subrout ine mdot edd rout ine

A.2 Implementation of Magnetic Braking

subrout ine jdot mb rout ine ( b inary id , i e r r )

in t ege r , i n t en t ( in ) : : b i na ry id

in t ege r , i n t en t ( out ) : : i e r r

i n t e g e r : : k , nz

type ( b i n a r y i n f o ) , po in t e r : : b

type ( s t a r i n f o ) , po in t e r : : s

r e a l (dp ) : : turnover t ime , enve lope edge

r e a l (dp) : : dr , t o t r , mb, jdot mb

r e a l (dp) : : eta , wind fac , s a t u r a t e f a c

r e a l (dp) : : t t boos t , wind boost

r e a l (dp) : : v e l r a t i o , tau l im

r e a l (dp) : : rsun4 , two p i d iv p3 , rad4

i e r r = 0

c a l l b ina ry pt r ( b inary id , b , i e r r )

i f ( i e r r /= 0) then

wr i t e (∗ ,∗ ) ’ f a i l e d in b ina ry pt r ’
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re turn

end i f

s => b% s donor

nz = s% nz

eta = s% x c t r l (1 )

wind fac = s% x c t r l (2 )

v e l r a t i o = s% x c t r l (3 )

tau l im = s% x c t r l (4 )

s a t u r a t e f a c = s% x c t r l (5 )

t o t r = 0 .0

turnover t ime = 0 .0

enve lope edge = 0 .0

enve lope edge = max( s% conv mx1 bot r , s% conv mx2 bot r )

do k = nz , 1 , −1
i f ( s% mixing type (k ) == convec t ive mix ing ) then

i f ( s% r (k ) . gt . enve lope edge ) then

i f ( k < s% nz ) then

dr = ( s% r (k ) − s% r (k + 1) )

e l s e

dr = ( s% r (k ) − s% R center )

end i f

i f ( s% conv ve l ( k ) . gt . v e l r a t i o ∗ s% csound (k )

. and . s% tau (k ) . gt . tau l im ) then

turnover t ime = turnover t ime + ( dr/ s% conv ve l ( k ) )

t o t r = t o t r + dr

end i f

e l s e

turnover t ime = turnover t ime
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t o t r = t o t r + dr

end i f

end i f

end do

! b% jdot mb = 0

rsun4 = rsun ∗ rsun ∗ rsun ∗ rsun
two p i d iv p3 = (2 . 0∗ pi /b% per iod )∗ ( 2 . 0∗ pi /b% per iod )∗&

(2 . 0∗ pi /b% per iod )

mb = −3.8d−30∗b% m(b% d i )∗ rsun4 ∗ &

pow cr (min (b% r (b% d i ) , b% r l (b% d i ) )/ rsun ,

b% magnetic braking gamma )∗ &

two p i d iv p3

! use the formula from rappaport , verbunt , and j o s s .

! apj , 275 , 713−731. 1983 .

i f (b% hav e r ad i a t i v e c o r e (b% d i ) . or . b% keep mb on ) &

! 2 .8 d6 i s turnover time in seconds f o r a MESA

! model us ing i n i t i a l mass o f 1 . 0 s o l a r masses ,

! s o l a r meta l i c i t y , at age 4 .6 Gyr . This i s

! approximately turnover time o f the Sun .

wind boost = (b% mdot system wind (b% d i ) / (−1.6d12 ) ) ∗∗ wind fac

t t boo s t = ( turnover t ime / 2 .8 d6 ) ∗∗ eta

jdot mb = ( wind boost ) ∗ ( t t b oo s t ) ∗ mb

! tak ing the per iod o f the sun to be 24 days

! => 10 ∗ P < Psun , P < 2 .4 days
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! 2 . 4 days = 207360 seconds

i f (b% per iod < 207360) then

! use the formula from Ivanova & Taam 2003 f o r qu i ck ly r o t a t i n g s t a r s

rad4 = b% r (b% d i ) ∗ b% r (b% d i ) ∗ b% r (b% d i ) ∗ b% r (b% d i )

b% jdot mb = (−6.0d30 ∗ rad4 / rsun4 ) ∗ 10 ∗∗ ( 1 . 7 ) ∗ &

(2073600 / b% per iod ) ∗∗ s a t u r a t e f a c ) ∗ &

t t boo s t ∗ wind boost

e l s e

b% jdot mb = jdot mb

end i f

i f (b% evo l v e bo th s t a r s . and . b% inc lude acc r e to r mb . and . &

(b% hav e r ad i a t i v e c o r e (b% a i ) . or . b% keep mb on ) ) then

b% jdot mb = b% jdot mb − &

3.8d−30∗b% m(b% a i )∗ rsun4 ∗ &

pow cr (min (b% r (b% a i ) , b% r l (b% a i ) )/ rsun ,

b% magnetic braking gamma )∗ &

two p i d iv p3

end i f

end subrout ine jdot mb rout ine
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Appendix B

Sample MESA inlist Files

Simulations within MESA are run with inlist files, these files are read sequen-

tially. If a variable is used multiple times, every subsequent use of the variable

overwrites the previous input. The sample inlist files shown here are exam-

ples of uses from within the main body of the text. All parameters not listed

in the sample inlist use the MESA default values.

B.1 Relaxation Sample

Forcing MESA to small time steps has the potential to introduce oscillations in

the simulation that are purely numeric. At the same time a large time step

has the potential to smooth over physical oscillations. In both cases the choice

of time step has the potential of leading to unphysical results and the “best”

choice of step size is not clear. In the case where the user wishes to force MESA

from a large time step to very short time steps between two evolutionary points,

a relaxation period is required to improve convergence of the simulation.

&star job

! set MESA directory, if empty load using $MESA_DIR

mesa_dir = ’’
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! If empty use default from within $MESA_DIR/star/defaults

history_columns_file = ’’

profile_columns_file = ’’

! start a run from a saved model

load_saved_model = .true.

saved_model_name = FILE TO LOAD

! save a model once run is over

save_model_when_terminate = .true.

save_model_filename = FILE TO SAVE

! setting initial model number

set_initial_model_number = .true.

initial_model_number = 0

! force MESA to use a small dt

set_initial_dt = .true.

years_for_initial_dt = SMALL DT

/ !end of star_job namelist

&controls

! maximum number of profiles, if negative no limit

max_num_profile_models = -1

! profile intervals, as we are trying to force small timesteps

! the profile and history output are not important

profile_interval = 10000
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history_interval = 1000

! when to stop

! max model number, need to set a sufficiently large number

! of models to ensure that the model has ‘‘relaxed’’

max_model_number = LARGE NUMBER

! max timestep size

max_years_for_timestep = SMALL DT

/! end of controls namelist
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